PhD Position on “The ocean’s carbon pump through the lens of metabolic rate–biomass relations”

100%, Zurich, temporary

The Environmental Microfluidics Group of Prof. Roman Stocker in the Institute of Environmental Engineering at ETH Zurich is seeking a dynamic and motivated doctoral student for a project on the scaling of metabolic rates with organism size, with a focus on microorganisms from the ocean. The position is funded by a recently awarded SNSF Sinergia Grant, for a collaboration between the groups of Prof. Roman Stocker (ETHZ), Prof. Andrea Rinaldo (EPFL), and Prof. Arti Ahluwalia (Uni Pisa). Review of applications will begin on September 30, 2019, with interviews planned for mid-October.

Project background

The ocean’s carbon (or, biological) pump, the large flux of carbon from the surface to the depths of the oceans caused by the sinking of particles, plays a crucial role in the Earth’s carbon cycle. Marine particles host diverse microbial communities, which, collectively, are responsible for the consumption of the sinking carbon, and thus effectively attenuate the amount of carbon that is exported, with direct consequences on the global carbon cycle and climate change. Yet, despite their importance, we currently lack a proper characterization of the metabolisms of the diverse species assemblages that colonize marine particles. Physiological studies have shown that metabolic rates scale with body mass according to a universal power-law, known as Kleiber’s law. However, metabolic rates have typically been measured at the level of individual species, and how they are modified when species are part of a community remains poorly understood.

Job description

This project aims at generalizing Kleiber’s law into the realm of communities of microorganisms by quantifying the total metabolism of the marine communities which colonize marine particles and comparing these to the metabolisms of species in isolation. The student will have the unique opportunity to learn, develop and apply a range of cutting-edge experimental techniques, including microfluidic technology, state-of-the-art microscopy, Raman microspectroscopy, and PAM fluorometry. Measurements will be guided and compared with theory developed within the collaboration. Findings will help advance one of the most important paradigms in ecology and will carry fundamental implications for our ability to predict the response of marine microorganisms to environmental perturbations.

Your profile

The successful candidate will have a background (completed master degree) in either physics, engineering, biology or biophysics, or related areas, with a strong quantitative inclination and a desire to work experimentally at the interface between biophysics, microbiology, and microbial ecology. The student will have the opportunity to work in a highly interdisciplinary, cutting-edge, fast-paced research environment, to interact with researchers from many different disciplines, to gain skills in a number of technologies, to learn about fundamental biophysical and ecological processes in microorganisms and to interact with world-class collaborators. The ability to work independently, but also to interact and collaborate within a team, will be great assets.

ETH Zurich

ETH Zurich is one of the world’s leading universities specialising in science and technology. We are renowned for our excellent education, cutting-edge fundamental research and direct transfer of new knowledge into society. Over 30,000 people from more than 120 countries find our university to be a place that promotes independent thinking and an environment that inspires excellence. Located in the heart of Europe, yet forging connections all over the world, we work together to develop solutions for the global challenges of today and tomorrow.
Working, teaching and research at ETH Zurich Link icon

Interested?

We look forward to receiving your online application including a CV, full transcripts from undergraduate studies (both Bachelor and Masters), a brief (1-2 page) statement of research interests, and contact details of 2 referees (preferably 3). Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

Find further information about the Institute of Environmental Engineering (www.ifu.ethz.ch) and Stocker Lab (www.stockerlab.ethz.ch). Questions regarding the position should be directed to Dr. Francesco Carrara by email at carrara@ifu.baug.ethz.ch (no applications).

Your workplace